Protein Engineering : Approaches to the Manipulation of Protein Folding by Saran A. Narang book DJV, PDF, EPUB
9781483161280 English 1483161285 Protein Engineering: Approaches to the Manipulation of Protein Folding outlines the complexity of the protein-folding problem and the potential of using genetic tools which, in combination with physical techniques, are expected to shed new light. The book begins with an overview of the basic concepts of protein folding, along with prediction methods and protein-folding models. Separate chapters cover experimental approaches to in vitro protein folding; general approaches used to characterize the folding reaction, equilibrium and kinetic experiments; and strategies employed to elucidate structure/function relationships in proteins of unknown tertiary structure. Subsequent chapters cover the structural and functional features of the HIV envelope protein; x-ray diffraction of proteins; application of Fourier transform infrared (FT-IR) spectroscopy to probe the secondary structure and orientation of membrane-associated proteins; and fluorescence measurements of proteins. The final chapters discuss nuclear magnetic resonance studies of proteins and the potential of the synthetic gene approach applied to the problem of protein folding.
9781483161280 English 1483161285 Protein Engineering: Approaches to the Manipulation of Protein Folding outlines the complexity of the protein-folding problem and the potential of using genetic tools which, in combination with physical techniques, are expected to shed new light. The book begins with an overview of the basic concepts of protein folding, along with prediction methods and protein-folding models. Separate chapters cover experimental approaches to in vitro protein folding; general approaches used to characterize the folding reaction, equilibrium and kinetic experiments; and strategies employed to elucidate structure/function relationships in proteins of unknown tertiary structure. Subsequent chapters cover the structural and functional features of the HIV envelope protein; x-ray diffraction of proteins; application of Fourier transform infrared (FT-IR) spectroscopy to probe the secondary structure and orientation of membrane-associated proteins; and fluorescence measurements of proteins. The final chapters discuss nuclear magnetic resonance studies of proteins and the potential of the synthetic gene approach applied to the problem of protein folding.